
Managing and Querying a Bilingual Lexicon with
Suffix Trees

Jorge Costa1, Luis Gomes1, Gabriel Pereira Lopes1, and Luis M.S. Russo2

1 Faculdade de Ciências e Tecnologia - Universidade Nova de Lisboa (FCT/UNL)
Quinta da Torre. 2829–516 Caparica, Portugal

jorge.costa@fct.unl.pt luismsgomes@gmail.com
gpl@fct.unl.pt

2 Instituto Superior Técnico – Universidade Técnica de Lisboa (IST/UTL)
Av. Rovisco Pais, 1049-001 Lisboa, Portugal

luis.russo@ist.utl.pt

Abstract. In this paper, we propose a bilingual translation lexicon man-
agement system based on generalized suffix trees. Bilingual pairs of ex-
pressions (single and multi-word) are stored in two separate suffix trees.
Bilingual lexicon entries are defined by setting links between two expres-
sions that translate each other, and thus form translation pairs. The sys-
tem supports insertion and deletion of individual entries (at any time)
as well as bulk insertion. The most interesting features of this system are
the monolingual and bilingual miscoverage queries which, for a given ex-
pression or pair of expressions, indicates which subexpressions (words or
multi-word passages) are not covered by the respective monolingual or
bilingual lexicon. The miscoverage results are important for flagging out
words and multi-words, out of vocabulary. Moreover, the performance of
suffix tree based miscoverage queries, when compared with an alternative
implementation using suffix arrays, are 10 times faster.

Keywords: Lexica, Lexicon Management, Generalized Suffix Trees, Ma-
chine Translation, Cross-Language Information Retrieval

1 Introduction

A bilingual lexicon is a set of pairs of expressions (word and multi-word 3)
of two different languages that are translations of each other, and thus form
translation pairs (a bilingual lexicon entry).

3 The concept of single or multi-word is more linked to Indo-European languages
where blank space is usually used as a word separator. This does not apply to
languages such as Chinese, where equivalent concept is linked to single or multi-
character expressions as the blank character is not used as a separator. And we are not
mentioning agglutinative languages such as Finnish or German where compounds
have no blank spaces separating agglutinated parts.

EPIA'2011 ISBN: 978-989-95618-4-7

675

2 Jorge Costa, Luis Gomes, Gabriel Pereira Lopes, and Luis M.S. Russo

When these translation pairs are automatically extracted and give rise to
translation tables [11] or bilingual lexicons [1], it may be necessary to manage
acquired translations (removing incorrect translations and inserting new ones).
And, since bilingual lexicons have many applications (Machine Translation,
translation alignment and Cross-Language Information Retrieval, to mention
just a few), it is important to provide efficient access to the lexicon.

For a better understanding of what follows, in this paper we call subex-
pression of an expression a substring of that expression. For example, for “lex-
icon management system”, the subexpressions are “lexicon”, “management”,
“system”, “lexicon management”, “management system” and “lexicon man-
agement system”.

We propose a system that supports lexicon management and advanced query-
ing, efficiently. This system can be integrated into existing applications, but
more importantly, it provides an innovative functionality, that we called mis-
coverage, not yet explored to its full potential.

Our management system identifies the subexpressions of an expression 4,
that do not (yet) have a translation stored in the lexicon, through the miscov-
erage queries. Miscoverage can be either monolingual or bilingual. Monolin-
gual miscoverage checks which subexpressions of an expression are not in the
corresponding monolingual lexicon. Bilingual miscoverage indicates, for two
expressions in different languages, which subexpressions of the pair are not
in the lexicon, or which subexpressions do not have a translation in the other
language. We present more details and some examples in Section 3.

The miscoverage functions are useful, because they identify which subex-
pressions are already known as translated and what still needs to be learned as
translation, thus guiding the extraction of new (missing) bilingual translation
pairs. We have been compiling an English–Portuguese lexicon, by manually
validating bilingual pairs automatically extracted from aligned parallel corpora
[1, 10]. As the lexicon grows, the miscoverage allow us to spot bilingual pairs
that are valuable additions to the lexicon, such as pairs of words or short ex-
pressions that were not yet in the lexicon and thus have no coverage, and on
the other hand, pairs of expressions (typically longer expressions) that might
not be so important because they are covered by existing entries.

As an example, consider that we have just started compiling a bilingual lexi-
con, containing computer science related expressions, and we have inserted the
pair “bilingual”–“bilingue”. Next, as we insert the pair “bilingual suffix tree”–
“árvore de sufixos bilingue”, our system tells us that there is a partial coverage
of that pair and, in particular, that the subexpressions “suffix tree”–“árvore de
sufixos” are not covered. As a matter of fact, most of the times when we have
partial coverage, the uncovered subexpressions are themselves translations of
each other and reasonable candidates for integrating the lexicon.

4 which can be as large as a whole sentence or paragraph

EPIA'2011 ISBN: 978-989-95618-4-7

676

Rui Prada
Rectangle

Managing and Querying a Bilingual Lexicon with Suffix Trees 3

In order to efficiently support the management of a bilingual lexicon and
inherent operations, we designed a system based on generalized suffix trees
[9]. Suffix trees are not commonly used in translation problems. Suffix arrays,
full-text indexes, are much more common in the Machine Translation area with
several works already published [3, 21], due to its fast access, low memory
consumption and easier implementation. In our particular case, the memory
consumption was not an issue (the lexicon tested had 200.000 entries), as we
wanted to compare the time performance of suffix trees and suffix arrays, prior
to tackling memory problems.

To support the particular queries implemented in the experimental context,
suffix trees have shown to be a better option (see Section 4). We do not expect
that a common lexicon will only have 200.000 entries, but our first approach
was to develop a system to manage the entries and return the miscoverage in-
formation efficiently, without taking in account the space. To extend our system
to larger lexicons and to more than two languages, it is necessary to improve
the suffix trees using approaches like compression (see Future Work).

We tested our solution against suffix arrays, to support the benefits of rep-
resenting a lexicon and defining queries over it, using suffix trees.

In the following sections, we explain the context in which our work is used
and present some of the works in the field. Then, we explain in more detail the
system implementation and provide some examples and results of a compari-
son between our system with suffix trees and suffix arrays.

2 Work Context

2.1 Suffix Trees

A suffix tree [9] is a full-text index built on all suffixes of a text T [1..n]. A suf-
fix tree has n leaves, each one corresponding to a suffix of T . In Figure 1, we
have a suffix tree for the text “abracadabra”, with leaf 1 corresponding to suffix
“abracadabra”, leaf 2 to “bracadabra” and leaf 5 to “cadabra”. This numeration
defines the suffix represented: leaf 1, for the first suffix (the biggest) and leaf
12 for the smallest suffix (the terminator character). Every text represented in a
suffix tree, needs a terminal character to mark the end of the suffix and avoid
possible loops. In Figure 1, the parent node of leafs 4, 6 and 11, is an example of
the utility of the terminal character, because it allows us to represent the suffix
corresponding to the last character of “abracadabra”, “a”.

Moreover, each tree edge is labeled by a string. The concatenation of these
labels, from the root to the leaf, is called path-label. Each path-label coincides
with a suffix of T . The leaves are sorted in lexicographic order of the suffixes,
like it is shown in Figure 1.

Using the path-label length, every node has a string-depth that is precisely
the size of the node’s path-label. The node-depth of a node is the existing num-

EPIA'2011 ISBN: 978-989-95618-4-7

677

Rui Prada
Rectangle

4 Jorge Costa, Luis Gomes, Gabriel Pereira Lopes, and Luis M.S. Russo

Fig. 1: Suffix tree for “abracadabra”, with leaves represented as boxes.

ber of nodes in the path between the root and the node itself. Finally, each inter-
nal node has a suffix link, except for the root. A suffix link of an internal node
with path-label xα, where x is a single character and α a substring (possibly
empty), is the node with path-label α. These links prune the search in the case
of a mismatch. A mismatch occurs when the next character of the pattern is
different from the next character of the edge in which we are descending. This
way, it avoids a return to the root, everytime a mismatch occurs.

A suffix tree has O(n2) nodes [19] and can be built in O(n) time [20, 6].

Generalized Suffix Trees A generalized suffix tree is a suffix tree that is able to
index more than one text. Following this idea, we implemented two different
generalized suffix trees to manage the bilingual lexicon, because this structure
supports more than one expression. Figure 2 shows an example of a generalized
suffix tree for the string “magician” and “abracadabra”. The different expres-
sions are differentiated in the leaf nodes. In Figure 2, (1, 2) means that it is the
leaf for the second bigger suffix of “abracadabra” (“bracadabra”), while (2, 2)

refers to the second suffix of “magician” (“agician”). The first numerical refer-
ence in the leaf distinguishes different expressions, while the second numerical
reference distinguishes the suffixes of the expression of the first reference.

2.2 Suffix Arrays

A suffix array [13, 8] is a permutation of all the suffixes of text T, in which the
suffixes are lexicographically sorted. More specifically, a suffix array of a text
T1,n is an array A[1..n] of a permutation of the interval [1, n], such that TA[i],n <

TA[i+1],n, where < stands for a lexicographic order [15]. In Figure 3, there is an
example of a suffix array for “abracadabra”.

As suffix trees, suffix arrays are also full-text indexes and, much like in suf-
fix trees, they can be used to search for patterns, with the difference that the

EPIA'2011 ISBN: 978-989-95618-4-7

678

Rui Prada
Rectangle

Managing and Querying a Bilingual Lexicon with Suffix Trees 5

Fig. 2: Generalized suffix tree for “abracadabra” and “magician”

final result is an interval A[sp, ep], in which sp is the starting position and ep

the final position. For this reason, suffix arrays were used to compare the per-
formance of the presented management system with suffix trees, especially for
the miscoverage queries.

2.3 Bilingual Lexicon and Suffix Trees on Machine Translation

A bilingual lexicon is a core component of any Machine Translation system.
In particular, bilingual lexicons are used for decoding [11], aligning parallel
texts [7, 16], and extracting translation templates (for Hierarchical Phrase-Based
Machine Translation) [12]. Therefore, it is important to provide efficient access
to the lexicon in several ways: for decoding, it is necessary to locate lexicon
entries in the text to be translated; similarly, for phrase alignment, it is necessary
to locate lexicon entries in parallel texts being aligned; and finally, for extracting
translation templates it is necessary to locate common sub-expressions among
lexicon entries. Using suffix trees, all these operations are performed in optimal
time (linear with regard to the size of the input).

In the Introduction Section, we stated that suffix trees are not the most com-
mon structure in computational linguistics. The complexity of the construction
algorithm and the higher memory consumption are the main factors for not
using suffix trees that much. Despite that, the construction is linear and they

Fig. 3: Suffix Array for “abracadabra$”.

EPIA'2011 ISBN: 978-989-95618-4-7

679

Rui Prada
Rectangle

6 Jorge Costa, Luis Gomes, Gabriel Pereira Lopes, and Luis M.S. Russo

support complex queries also in linear time [9], which was the focus of our
analysis. One of the fields in which suffix trees are frequently used is bioinfor-
matics, where such complex queries are relevant [2].

2.4 Bilingual Suffix Trees

There is an interesting prototype of Bilingual Suffix Trees (BST) [14] that uses
generalized suffix trees (GST) to build a corpus of parallel phrases, from com-
parable non parallel corpora, to extract word unknown translations. A bilingual
suffix tree results of matching the GST of a language with the GST of the other
language, resulting in a tree with a structure like the one shown in Figure 4.

With the use of a seed bilingual lexicon, the BST defines and stores an align-
ment between parallel sub-corpora. In Figure 4 we show an example of an
alignment, using the bilingual lexicon on the top right, and where the same
edge is used to represent parallel expressions from different texts, defining
those expressions as aligned. The first edge on the left, leaving the root, shows

Fig. 4: Example of Bilingual Suffix Tree.

EPIA'2011 ISBN: 978-989-95618-4-7

680

Rui Prada
Rectangle

Managing and Querying a Bilingual Lexicon with Suffix Trees 7

an example of this situation with x from the first corpus, aligned with a from
the second corpus.

The BSTs from Munteanu et. al. [14] demonstrate another use of suffix trees
in Machine Translation. They are important for the alignment of non parallel
corpora, which helps to demonstrate that suffix trees can be a good solution for
different machine translation processes, but all the information is in one tree.
In our management system, not only we are able to manage and query over
a bilingual lexicon, but also define links between translation pairs, using two
different GSTs, separating the different languages.

3 Representing the Lexicon

Our representation of the bilingual lexicon uses two generalized suffix trees,
one for each language in the system (English and Portuguese in this case),
and both are built with an adaptation of the Ukkonen’s algorithm [20]. As it
is shown in Section 4, suffix links make a significant difference in miscoverage
queries and are the main reason for the performance of our implementation.

3.1 Lexicon Management

To represent the expressions in our bilingual lexicon management system, we
assume that a word is separated from another word by a blank space. No addi-
tional spaces are inserted.

In our management of a bilingual lexicon, we allow adding, removing and
linking pairs of expressions. Such pairs may be added either individually (as
a single lexicon entry), or as a set. For the case of a single lexicon entry, this
means that we consider two expressions that are already a known translation
pair, which means that are already linked, or two expressions that are not yet
defined as a pair in the lexicon. Following this idea, the most important feature
for the management of the lexicon is the correspondence link.

A correspondence link is an abstraction that helps defining a translation
pair. We say that two expressions are translation pairs, if they have a correspon-
dence link between them. In Figure 5, we see a representation of the bilingual
lexicon in Table 1 using suffix trees, with the correspondence links between the
nodes whose path-labels are one side of the translation pair expression. For in-
stance, “bilingual suffix tree” is translated by “árvore de sufixos bilingue”, so
there is a connection from the respective nodes of both trees. An expression
can have more than one link, like “suffix” that can be translated by “sufixo”
and “de sufixos”. Every expression ends with a terminal character $, that we al-
ways consider as unique even when compared with itself, to distinguish every
terminal character of every expression.

The correspondence links are created when we add a pair to the system.
If the expressions already exist, then it is only necessary to search for the re-
spective nodes in both trees and add the link between the nodes. If one of the

EPIA'2011 ISBN: 978-989-95618-4-7

681

Rui Prada
Rectangle

8 Jorge Costa, Luis Gomes, Gabriel Pereira Lopes, and Luis M.S. Russo

Table 1: Bilingual Lexicon Example

English Portuguese
bilingual bilingue
bilingual suffix tree árvore de sufixos bilingue
suffix de sufixos
suffix sufixo
suffix tree árvore de sufixos
tree árvore

Fig. 5: Correspondence Links

expressions (or both expressions) does not exist, then we change the structure
of the tree first, creating the new nodes and labels needed to represent the new
expressions, leaving the creation of the link to be done later.

Whenever the tree changes, it is necessary to determine the Depth-First
Search (DFS) [5] timestamps for every node. DFS is an algorithm to search a
tree, following a methodology of analyzing the nodes by depth. If a node has
children, the left child is visited first and so on, until we reach a node with-
out children. Then, we go back and search the siblings of those nodes. The first
timestamp marks the first time we reach a node, while the second marks the
second time in which that node is visited, after all its descendants were visited.
When we add several pairs, we use a simple DFS search in the complete tree.
When a single pair is added, then we only look at the neighbor nodes (parent
and siblings) and adjust the timestamps locally. The DFS timestamps are used
to identify a node and also to determine an ancestor of a node, which is useful
for bilingual miscoverage queries and the main reason for using DFS algorithm.

EPIA'2011 ISBN: 978-989-95618-4-7

682

Rui Prada
Rectangle

Managing and Querying a Bilingual Lexicon with Suffix Trees 9

Taking first and second as the DFS timestamps of a node, a node X is ancestor
of a node Y if: X.first ≤ Y.first and X.second ≥ Y.second. Using these times-
tamps, finding an ancestor of a node takes constant time, which is one of the
main reasons to the bilingual miscoverage performance, explained in the next
section in detail.

The removal of a pair only eliminates the link between the elements. The
expressions still remain in the lexicon, but without being a translation pair.

3.2 Miscoverage Queries

Miscoverage queries are the main innovation of the bilingual lexicon manage-
ment system presented. Through these queries, our lexicon can provide useful
information to the extraction of translation pairs, using the information already
indexed in the lexicon. This will not only benefit the alignment and extraction,
but allows a lexicon growth in each iteration, because with new information
provided by miscoverage about non known translations in either side of a pair
of translation expressions, these processes can also support and guide the ac-
quisition of new and important information to be stored in the lexicon.

In the next subsections, we describe the implementation and give some ex-
amples of the miscoverage queries, at monolingual and bilingual level. We will
use the bilingual lexicon example in Table 1, as a running example.

Monolingual Miscoverage on a monolingual lexicon is the simplest form of
miscoverage. It only analyzes one expression of a single language, leading to
a search in only one of the trees of the lexicon. The idea is to determine which
subexpressions do not exist in the lexicon. The search is focused on the longest
common prefix (descending in the tree for the most consecutive characters pos-
sible) we can find. For “bilingual suffix tree” we would descend with “bilin-
gual” and then with “suffix tree”, finding these two subexpressions. For “bilin-
gual suffix array”, we would descend with “bilingual” and “suffix”, but not
with “array”, meaning that this subexpression is not covered.

The main idea in implementing this operation is to add a blank space, at the
beginning of the query, and use the unique terminator character ($) at the end of
the query, like in Figure 6 with “suffix tree”. Then, we use two integer indexes j
and i. Index i is incremented every time we can descend with the next character,
while j is incremented when we find a mismatch and follow a suffix link. At the
end, an expression is covered if its i-th character points to a blank space (or the
terminal character) and the j-th character also points to a blank space, with i
larger than j: i > j and (query[i] = “ ” or query[i] = $) and (query[j] = “ ”).

Figure 6 shows some examples of different cases, based on the placement of
the indexes. In the first example on the left, both indexes point to a blank space,
so “suffix” is covered. The second on the left shows “suffix” covered as well, be-
cause j points to a blank space and i pointed to a blank space recently. The third

EPIA'2011 ISBN: 978-989-95618-4-7

683

Rui Prada
Rectangle

10 Jorge Costa, Luis Gomes, Gabriel Pereira Lopes, and Luis M.S. Russo

Fig. 6: Examples of monolingual miscoverage situations based on the indexes.

example on the left and the first on the right violate the previous conditions,
which means that nothing was found as covered yet. The other two examples
follow the restrictions, so the subexpressions between j and i are covered.

Bilingual Miscoverage is a more complex process. Consider two expressions
e1 and e2, each one in a different language. First, we determine the monolingual
miscoverage of e1 and e2, returning two sets, s1 and s2, of the nodes whose
path-labels are the subexpressions covered. Then, for every node N1 in s1, we
try to find if one of its correspondence links, points to an ancestor of a node
N2 in s2. If this happens, then the path-label corresponding to N1 and N2 are a
translation pair, meaning that those expressions have no bilingual miscoverage,
thus are covered.

As an example, considering that we were looking for “suffix link” – “bilingue
de sufixos”, we were able to find the correspondence link between “suffix”
and “de sufixos”. The node labeled “suffix” has a correspondence link to the
node labeled “de sufixos” (by table 1), which is an ancestor of itself. Thus, these
subexpressions have bilingual coverage. The pair “link” – “bilingue” does not
have bilingual coverage, because the node for “bilingue” does not have a cor-
respondence link to a node that is ancestor of any node in s2.

As the first step is similar to the monolingual miscoverage, the main chal-
lenge is in the second step. To speed up the analysis of s1 and s2, we order s2
by the first DFS timestamps, using then a binary search. This binary search is
used for avoiding nodes that cannot be an ancestor, namely the ones with first
DFS timestamps higher than the first timestamp of N1.

In Table 2 we present some examples of results of the miscoverage queries,
based on the lexicon of Table 1. When there is no result presented, means that
the expression is fully covered, thus no coverage is found.

EPIA'2011 ISBN: 978-989-95618-4-7

684

Rui Prada
Rectangle

Managing and Querying a Bilingual Lexicon with Suffix Trees 11

Table 2: Examples of miscoverage query results

Query Results
Monolingual miscoverage of “tree”
Monolingual miscoverage of “bilingual prefix tree” “prefix”
Monolingual miscoverage of “mono suffix array” “mono” “array”
Bilingual miscoverage of “red tree” “árvore vermelha” “red” “vermelha”
Bilingual miscoverage of “bilingual tree” “árvore bilingue”
Bilingual miscoverage of “linear suffix tree” “árvore de sufixos linear” “linear” “linear”

4 Results

In this section, we show the time complexity, regarding the operations and con-
struction of the bilingual lexicon. Then, we present some results that compare
the solutions in terms of time consumption, with a variable size of the tree and a
variable number of operations done in a fixed time interval. With these results,
the goal is to demonstrate the benefits of suffix trees when compared with suffix
arrays, regarding the implementation of the miscoverage queries.

4.1 Time Complexity

Next, we present the list of variables used to represent the time complexity
formula in Table 3, where |X| indicates the length of expression X.

– eA – Expression of a language A.
– eB – Expression of a language B.
– e – Expression in a predefined language.
– f – File with the terms to index in the bilingual lexicon.
– s – Size of file ’f’.
– wA – Number of single words of an expression in the tree for language A.
– lB – Number of correspondence links from a node of the tree for language

B, to the tree for language A.
– ε – Factor that varies from 1 to 2.

In Table 3 we show the time complexities for all main operations. Adding,
removing and querying for a pair has the usual linear complexity, based on the
length of the expressions. Adding several pairs from a file is fully dependable
on the size of the file. The monolingual miscoverage is similar to the query-
ing for a pair, but with only one expression instead of two. The most complex
operation is the bilingual miscoverage, with the third expression representing
the finding of the pair. lB represents the starting node set, while the logarithm
expression is from finding ancestors. Further to the linear searches for the two
expressions, the operation has the factor for analyzing if the results from the
search, have known translation pairs, using the ancestor technique.

EPIA'2011 ISBN: 978-989-95618-4-7

685

Rui Prada
Rectangle

12 Jorge Costa, Luis Gomes, Gabriel Pereira Lopes, and Luis M.S. Russo

Table 3: Time Complexities

Functionality Complexity
Add / Remove a single pair to the lexicon O(|eA|+ |eB |)
Add multiple pairs to the lexicon from a file O(s)

Check if two expressions form a pair O(|eA|+ |eB |)
Monolingual Miscoverage O(|e|)
Bilingual Miscoverage O(|eA|+ |eB |+ (lεB × log(wA))

4.2 Comparing Miscoverage with Suffix Trees and Suffix Arrays

One of the biggest challenges on building the bilingual lexicon was to imple-
ment the Ukkonen’s algorithm. For comparing the performance of our final so-
lution with suffix trees and a solution for the same queries using suffix arrays,
we used two approaches. The first compares the performance of the systems,
by number of operations done in a fixed time range. The second compares the
number of operations done, by varying the size of the tree. The bigger differ-
ence in the implementations is the existence of suffix links. With suffix trees, the
searches use suffix links, while in the simulated suffix arrays, the search returns
to the root, every time it is not possible to descend.

In Figure 7, we present some results of the number of operations completed
(yy axis), using both structures, with the time intervals from 10 to 60 seconds in
the xx axis. The number of operations grows in both cases, but with suffix trees
it is much bigger, especially for a larger range of time, which demonstrates the
benefits of the structure for these queries, compared with suffix arrays.

In Table 4, the difference of performance in both structures is still visible, but
the number of operations done in 10 seconds, does not vary too much. There
is a slight decrease of operations done, when the number of terms in the tree

(a) Monolingual Miscoverage (b) Bilingual Miscoverage

Fig. 7: Number of Miscoverage Operations Done in a Time Range

EPIA'2011 ISBN: 978-989-95618-4-7

686

Rui Prada
Rectangle

Managing and Querying a Bilingual Lexicon with Suffix Trees 13

Table 4: Miscoverage Operations by Tree Size

Number of Elements Suffix Arrays Suffix Trees
10.000 25.534 244.326
20.000 24.319 244.895
50.000 22.182 243.884
100.000 20.241 242.987
200.000 19.302 242.471

increases, but it is not a very significant difference, because the search depends
almost on the pattern size, and not the tree size. The range for the number of
elements in the tree was from 15.000 to 200.000 and the results presented are for
the bilingual miscoverage.

By analyzing these results, the improvements that suffix trees provide, when
compared to suffix arrays, are 10 times better, which is significant. This happens
because of the existence of suffix links, allows the pruning of a search, especially
in the miscoverage queries, thus leading to the efficiency demonstrated.

5 Future Work

The focus of our study was the time efficiency of suffix trees, to develop the
text mining miscoverage queries, comparing their time performance against
suffix arrays. In this study we used a lexicon with 200.000 entries, but for a
lexicon with millions of entries, the memory consumption becomes an issue too
important to be ignored. Moreover, suffix trees are structures with high space
consumption (10 times more than the text), which makes the system inefficient.

In terms of future work, we aim to solve the space issue using compressed
indexes [15], namely compressed suffix trees [17, 18, 4]. Using these compressed
indexes, the system will consume 90% less memory, without losing the linear
characteristics of the suffix trees.

With a system based on compressed indexes, it is our intention to expand it
to support 3 or more languages, thus needing 3 or more compressed structures.
Having a multilingual lexicon, we need to adapt the miscoverage queries for
a multilingual environment. The miscoverage queries will also be improved to
provide more complete results and to find miscovered alignment patterns. The
correspondence links must also be adapted to support multiple languages. In-
stead of one correspondence link between trees, the lexicon would have N(N−1)

2

links, with N as the number of languages represented.
The implementation of the lexicon opens the possibility of developing higher

level applications, like the inference of new translations, using only two aligned
expressions and the information from miscoverage. In Figure 8, we know that

EPIA'2011 ISBN: 978-989-95618-4-7

687

Rui Prada
Rectangle

14 Jorge Costa, Luis Gomes, Gabriel Pereira Lopes, and Luis M.S. Russo

Fig. 8: Inference of the pair Z–Z’ co-occurrence

X, XY and Y are in the English lexicon and that W’, Z’, X’ and X’Y’ are in the
Portuguese lexicon, using the monolingual miscoverage. With bilingual mis-
coverage, we find the pairs X–X’, XY–X’Y’ and W–W’. Using this knowledge,
we can infer co-occurrence of the pair Z–Z’, because it is the only part missing
and thus support translation extraction. Bilingual miscoverage is also impor-
tant for the classification of translation pairs [10], because it is an important
feature used to that matter.

6 Conclusions

The system implemented accomplishes the goals of finding a way of represent-
ing a bilingual lexicon, using suffix trees. These structures are not used so often
in linguistics, due to the memory constraints already mentioned in this paper.
In this study, we ignored the memory problems to compare our system, in terms
of time efficiency with an alternative supported by suffix arrays.

The results were 10 times better, in terms of number of operations done in a
period of time, which indicates that suffix trees, when memory is not an issue,
are a good solution for managing a bilingual lexicon.

We were able to implement the queries proposed, which benefits the extrac-
tion of new translation pairs, thus enabling the lexicon to steadily grow with
more translations. This implementation is efficient using suffix trees, which
leads to further interesting projects to solve the memory problem, using com-
pressed suffix trees, enabling a solution efficient in terms of high speed query-
ing and low memory consumption.

Acknowledgements The authors would like to acknowledge VIP Access project
(Ref. PTDC/PLP/72142/2006) and ISTRION project (Ref. PTDC/EIA-EIA/
114521/2009) funded by FCT/MCTES that supported the research carried out.

References

1. Aires, J., Lopes, G., Gomes, L.: Phrase translation extraction from aligned parallel
corpora using suffix arrays and related structures. Progress in Artificial Intelligence
pp. 587–597 (2009)

EPIA'2011 ISBN: 978-989-95618-4-7

688

Rui Prada
Rectangle

Managing and Querying a Bilingual Lexicon with Suffix Trees 15

2. Barsky, M., Stege, U., Thomo, A., Upton, C.: Suffix trees for very large genomic se-
quences. In: Proceeding of the 18th ACM conference on Information and knowledge
management. pp. 1417–1420. ACM (2009)

3. Callison-Burch, C., Bannard, C.: A compact data structure for searchable translation
memories. In: EAMT-2005 (2005)

4. Cánovas, R., Navarro, G.: Practical compressed suffix trees. In: Proc. 9th Interna-
tional Symposium on Experimental Algorithms. pp. 94–105. LNCS 6049 (2010)

5. Cormen, T.: Introduction to algorithms. The MIT press (2001), pp. 540–549
6. Farach, M.: Optimal suffix tree construction with large alphabets. In: focs. p. 137.

Published by the IEEE Computer Society (1997)
7. Gomes, L., Aires, J., Lopes, G.: Parallel texts alignment. In: New Trends in Artificial

Intelligence, 14th Portuguese Conference in Arificial Intelligence, EPIA 2009, Aveiro,
October, 2009, Proceedings. pp. 513–524. Universidade de Aveiro (2009)

8. Gonnet, G., Baeza-Yates, R., Snider, T.: Information retrieval: Data structures and
algorithms, chapter 3: New indices for text: Pat trees and pat arrays. Prentice Hall,
Upper Saddle River, New Jersey 7458, 66–82 (1992)

9. Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge Univ Pr (1997)

10. Kavitha, K.M., Gomes, L., Lopes, G.: Using svms for filtering tables for pbsmt. In:
EPIA 2011. APPIA, Portuguese Association for Artificial Intelligence (2011)

11. Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N.,
Cowan, B., Shen, W., Moran, C., Zens, R., et al.: Moses: Open source toolkit for sta-
tistical machine translation. In: Proceedings of the 45th Annual Meeting of the ACL.
pp. 177–180. Association for Computational Linguistics (2007)

12. Lopez, A.: Hierarchical phrase-based translation with suffix arrays. In: Proc. of
EMNLP-CoNLL. pp. 976–985 (2007)

13. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches. In:
Proceedings of the first annual ACM-SIAM symposium on Discrete algorithms. pp.
319–327. Society for Industrial and Applied Mathematics (1990)

14. Munteanu, D., Marcu, D.: Processing comparable corpora with bilingual suffix trees.
In: Proceedings of the ACL-02: Empirical methods in natural language processing-
Volume 10. pp. 289–295. Association for Computational Linguistics (2002)

15. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Surveys
(CSUR) 39(1), 2 (2007)

16. Och, F., Ney, H.: The alignment template approach to statistical machine translation.
Computational Linguistics 30(4), 417–449 (2004)

17. Russo, L., Navarro, G., Oliveira, A.: Fully-compressed suffix trees. ACM Transac-
tions on Algorithms (TALG) (2011), to appear

18. Sadakane, K.: Compressed suffix trees with full functionality. Theory of Computing
Systems 41(4), 589–607 (2007)

19. Sedgewick, R., Flajolet, P.: An Introduction to the Analysis of Algorithms. Addison-
Wesley, Reading (1996)

20. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260 (1995)
21. Yamamoto, M., Church, K.: Using suffix arrays to compute term frequency and doc-

ument frequency for all substrings in a corpus. Computational Linguistics 27(1),
1–30 (2001)

EPIA'2011 ISBN: 978-989-95618-4-7

689

Rui Prada
Rectangle

